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Introduction 
The longitudinal youth survey ‘Transition from Education to Employment’ (TREE) is based 
on a panel survey focusing on youths’ pathways from school to working life. The Swiss sec-
tion of the PISA study conducted in spring 2000 (PISA, 2002) served as the first wave of the 
panel survey. This internationally comparative survey collects data on basic competencies, 
such as reading proficiency, basic knowledge in mathematics and the natural sciences, along 
with detailed information on important background and context factors. The TREE project 
follows up those youths initially surveyed and tested by PISA in 2000. Seven survey panels 
have been conducted on a yearly basis from 2001 to 2007, an eighth panel in 2010. This lon-
gitudinal design is geared to obtaining representative longitudinal information about the diffi-
culties encountered – and how they are dealt with – in the transition from school to vocational 
education and training, and later on to the labour market.   
This documentation describes the longitudinal sample weights for the initial PISA survey and 
the first eight TREE panel waves. It is an update of the 2008 documentation for the first seven 
TREE panel waves (Sacchi 2008a, 2008b), which in turn was based on previous working pa-
pers (Sacchi, 2003, 2004a, 2004b). 

1 Sample and population 
 
The PISA sample serving as the basis for the TREE panel is designed to be representative for 
ninth graders as well as for fifteen-year-olds irrespective of the grade they had attended at the 
time. It involves a two-stage, multiply disproportionate random sample based on predefined 
sample sizes for the two groups just mentioned, for the language regions, and the participating 
cantons (for details see Renaud, Ramseier & Zahner, 2000; PISA, 2002). Apart from this, an 
independent class sample was drawn from all ninth grade classes in French-speaking Switzer-
land, and all students from each of the classes selected were surveyed (single-stage cluster 
sample, cf. PISA Romandie, no date).  
The TREE population is defined as the subset of PISA respondents who at the time of the 
PISA survey had attended a regular public school anywhere in Switzerland or a regular pri-
vate school in Italian-speaking Switzerland and had not yet completed compulsory education 
at the time but then left compulsory school at the end of the 1999-2000 school year. The 
TREE study population is therefore for the most part the same as the subsample of ninth grad-
ers in PISA.1  
The exception that needs to be mentioned is that students of private schools have been in-
cluded only in Italian-speaking Switzerland and not in the two other language regions.2 More-
over, PISA respondents who had not yet left compulsory school one year after the initial 
PISA survey were not included in the TREE population.  
 

 
1 Additionally included is a small group of youths from the sample of 15-year-olds who attended seventh or 

eighth grade at the time of the PISA survey and who prematurely dropped out of compulsory education dur-
ing the 1999/2000 school year (≈ 1 % of the initial TREE sample). 

2 This reduces the PISA sample (N=13467) by 673 respondents or approximately 5 percent. 
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2 Survey process and response 
For reasons of data protection, the TREE panel surveys required that consent to participate 
already be obtained from the student target group during the PISA survey. For this purpose, a 
target group specific information sheet about the TREE project was distributed during the 
PISA test sessions asking PISA participants to also participate in TREE. In addition, a special 
information leaflet was handed out to inform PISA test administrators (cf. Meyer, 2000). 
Youths willing to participate in TREE were asked to return the information sheet containing 
their address information. An explorative analysis of address return rates clearly shows signs 
of regional or local test administration, as the case may be, representing a crucial factor af-
fecting participation in the address survey (Meyer, 2000: 4). Those youths who volunteered 
their addresses were surveyed in spring 2001 (wave 1) and then again every spring in yearly 
intervals. Table 1 gives an overview of the survey process up to the seventh and so far last 
follow-up survey in 2010. 
It turned out only in retrospect that 727 cases out of the 7,070 PISA respondents who provi-
ded their addresses for the panel study did not fit the criteria for inclusion in the study popula-
tion.1 The large majority of those youths (N=608) were either attending compulsory school or 
repeating ninth grade at the time of the first TREE panel wave in 2001. Another good 100 
cases were excluded because they had not been attending a type of school included under the 
TREE sampling criteria at the time of the PISA survey (particularly special schools were ex-
cluded). The remaining sample for the first TREE panel wave thus comprises 6343 cases. 
Table 1 documents the initial TREE sample, cumulative sample attrition across panel waves 
(in this respect also note the information provided at the bottom of the table), and the response 
rates of the seven panel waves based on the revised initial sample. An excellent response rate 
of between 76 and just under 88 percent was achieved in each wave. Cumulatively, this re-
sulted in a still sizeable participation rate of close to 54 percent up to the eighth wave. More 
than 41 per cent of the youths in the initial sample participated in all of the eight panel waves. 
This is a very good result for such a long, multi-wave panel survey. 
The exceptionally high level of overall participation has been achieved by offering potential 
dropouts alternative modes of participation. For instance, in the first four TREE waves, par-
ticipating youths were given the option of responding to the survey questions by phone in-
stead of completing the self-administered questionnaire, and – if necessary – a considerably 
shorter instrument was used (short CATI interviews). From the fifth wave on, TREE has em-
ployed a combination of telephone interviewing and a written questionnaire as the standard 
mode of administering the survey. This change in methods was in order because of the in-
creasing diversity of individual education and employment paths as respondents grew older, 
which would have required increasingly complex sequences of filter questions to the point of 
rendering a written questionnaire unmanageable. Bearing in mind the need for maintaining 
intraindividual comparability over time, it is still important to obtain information underlying a 
number of items and psychological scales prone to mode effects (Klein & Porst, 2000; Scher-
penzeel, 2001) in written form.   

 
1 The initial TREE sample was singled out mostly based on information obtained in the first wave and, in the 

second instance, based on indirect information about non-respondents (from contact records). 
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Table 1: Initial sample, sample realized, and panel attrition 
(Absolute numbers) National 

PISA 
sample 

Class 
sample 
French-
speaking 
Switzer- 
land 

Combined 
initial 
sample 

Sample 
realized 
(n) 

Response 
rate (%) 

1. PISA survey   
Initial PISA sample 10,423 ? ?  

participants outside of PISA population 1) 101 ? ?  
absent at time of survey 150 ? ?  

PISA survey 10,172  5,073 2) 15,241 14,494 95.1 %
participants included in both PISA samples  – 1,031 

Composite PISA sample  13,463 
participants outside of TREE population 3)  – 673  

Initial sample for address survey  12,794 

2. TREE panel   
 

Address survey   12,794 7,070 55.3 %
not included in the TREE population 4)    – 727 

Initial TREE sample    6,343 
Panel wave 1   6,343 5,532 87.2 %

final drop out by wave 1   – 400   

Panel wave 2   5,943 5,210 87.7 %
final drop out by wave 2   – 344  

Panel wave 3   5,599 4,880 87.2 %
final drop out by wave 3   – 266   

Panel wave 4   5,333 4,680 87.8 %
final drop out by wave 4   – 284   

Panel wave 5   5,049 4,504 89.2 %
final drop out by wave 5   – 205   

Panel wave 6   4,844 4,135 85.4 %
final drop out by wave 6   – 204   

Panel wave 7   4,640 3,982 85.8 %
final drop out by wave 7   – 120  
mistakenly not contacted in wave 8   – 15  

Panel wave 8   4,505 3,424 76.0%

Cumulative participation TREE T1 – T8  3,982 54.0 %
number participating in all 8 waves  2,618 41.3 %

1) Unable to complete PISA test session.  
2) Indirectly inferred from sample weights. 
3) Not included in the TREE population were youths attending private schools (with the exception of Italian-speaking 
    regions), 15-year olds in non-compulsory education, youths from Bernese Jura. 

 
Two non-response surveys that followed up on the TREE waves 2003 and 2004 also suggest 
switching data collection methods (Stalder & Dellenbach; 2005). The two follow-up surveys 
each asked more than 1000 youths about their reasons for either refusing to participate in the 
respective panel wave at all or only participating by phone. The non-response analyses iden-
tify time constraints as the main reason given for not participating in the written survey or not 
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participating at all. Moreover, youths opting for the telephone survey (short or long version) 
criticize the length and increasing complexity of the written questionnaire. The reasons of-
fered for complete refusal, however, tend to be a lack of interest in the topic and reluctance to 
continue regular participation in the study. This feedback supports arguments in favour of 
switching to a method mix focusing on CATI interviews that should be clearly shorter than 
the longer optional telephone interview.  
Hence, there are good theoretical and empirical reasons calling for the shift implemented in 
the fifth wave to a mixed method design combining a fairly short telephone interview and a 
written supplementary questionnaire. From wave 5 on, respondents in addition to taking the 
survey in the standard mixed form have been given the choice of either taking the long ver-
sion entirely in written form or responding only to a reduced set of questions either by phone 
or in written form (mostly CATI, in individual cases in written form).  
As shown in Table 2, the proportion of respondents willing to participate only in the shorter 
survey has risen sharply from the third wave on. Initially hovering around two to three per-
cent, from T3 on that share climbs to fifteen percent and reaches the 20 percent mark by the 
fifth wave. The option of taking the shorter survey (Optional Mode 2) apparently has been a 
major factor in accounting for the pleasingly high participation rate over time. In addition, the 
standard use of a mixed mode design has probably also been a factor since it has significantly 
facilitated the participation of youths who are less proficient in dealing with written texts.  
 
Table 2: Type of participation by panel wave 
Survey method  
(share of respondents) 

Standard Mode Optional Mode 1: 
full list of questions 

Optional Mode 2: 
short list of questions 

TREE panel wave    
Wave 1 (N = 5,532) Questionnaire  (91.3 %) CATI long (6.6 %) CATI short (2.2 %) 

Wave 2 (N = 5,210) Questionnaire (91.7 %) CATI long (5.0 %) CATI short (3.3 %) 

Wave 3 (N = 4,880) Questionnaire (81.7 %) CATI long (3.0 %) CATI short (15.4 %) 

Wave 4 (N = 4,680) Questionnaire (81.3 %) CATI long (5.2 %) CATI short (13.5 %) 

Wave 5 (N = 4,504) CATI plus written (76.5 %)  1) Questionnaire (3.1 %)  2) CATI  (20.5 %)  3) 

Wave 6 (N = 4,135) CATI plus written (79.7 %) 1) Questionnaire (1.1 %) 2) CATI  (19.3 %)  3) 

Wave 7 (N = 3,982) CATI plus written (74.0 %) 1) Questionnaire (5.7 %) 2) CATI (20.3 %) 3) 

Wave 8 (N = 3,424) CATI plus written (71.6 %) 1) Questionnaire (9.1 %) 2) CATI (19.3 %) 3) 

1) Supplementary questionnaire especially containing various psychological scales prone to mode effects. 
    Share includes cases who broke off the CATI interview. 
2) Basic written (instead of CATI interview) plus supplementary questionnaire. 
3) Supplementary interview not completed; includes cases who completed basic written questionnaire instead of CATI. 
 
Table 1 already shows that a significant share of sample attrition occurred prior to the first 
TREE survey as the address survey was conducted in connection with administering the PISA 
test. This is illustrated in the following diagram, which reflects the gradual decline in the size 
of the remaining panel sample across the individual waves.1  
Since sample attrition and non-response only in rare cases can be expected to occur at random 
(Schnell, 1997), panel weights are usually used to compensate for the potential bias in sample 
composition (see for instance the comparison of methods by Rizzo, Kalton & Brick, 1994). 

 
1 Sample attrition shown in the diagram refers to cases of final drop out from the sample.  



 7

As far as TREE is concerned, the main effort should be devoted to non-response in connec-
tion with the address survey by PISA test administrators prior to the actual TREE survey 
since non-response by far has occurred most frequently at this stage (see Diagram 1). 
 
Diagram 1:  Cumulative impact of panel attrition (initial PISA sample = 100%)1 

 

  
Compared to cross-sectional surveys, it is far easier to correct for non-response bias in subse-
quent waves of a panel survey, as much more extensive information about non-respondents is 
available from previous waves. Regarding the TREE weights, it is very fortunate that, at ap-
proximately 5 percent, non-response was very low in the PISA survey that served as the first 
wave of the TREE panel. All information about respondents and the conditions surrounding 
the survey obtained in the course of PISA are thus available for correcting for the high level 
of non-response encountered in the address survey. In addition, all the information from any 
given TREE wave can be used to correct for non-response occurring in subsequent waves. 
 

 
1 Share of respondents who remain in the sample up to the respective panel wave (i.e. who do not permanently 
withdraw from participating in the survey). 
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3 Construction of the TREE panel weights 
Panel weights for samples of individuals are usually constructed as the reciprocal of the prod-
uct of the individual response probabilities for the different panel waves (cf. Sacchi 2001) – 
the German Socio-Economic Panel is a case in point (Haisken-DeNew & Frick, 2000, 140 f.). 
For the TREE panel the following relation thus holds: 
 

iWtiWiADRiPISAiPISA
i AAAAE

G
..1...

1111
⋅⋅⋅⋅

⋅
= K  (1) 

 
where 

iG  longitudinal raw weight for panel wave t for respondent i 

EPISA.i  probability of inclusion of i in the initial PISA sample 

APISA.i  probability of participation of i in the PISA survey 

AADR.i  probability of participation of i in the TREE address survey 

AW1.i  probability of participation of i in TREE panel wave 1 

iWtA .  probability of participation of i in TREE panel wave t 

 
The probabilities of participation A..i are conditional probabilities, thus referring to the likeli-
hood of response provided that a respondent i is part of the initial PISA sample and does not 
drop out of the panel sample in one of the previous waves. The quantitatively most significant 
source of panel attrition is final refusal to participate not just in the wave in question but also 
in all future waves (see notes at the bottom of Table 1).1 In addition, in each wave there are a 
handful of youths who are deleted from the survey population due to migration, decease or 
relocation and who could not be contacted.  
With regard to the TREE panel, a weighting model as defined by equation (1) has the follow-
ing advantages: 

 The model builds on existing PISA weights, which correct for design effects and non-
response pertaining to the PISA sample. The weights are constructed as the reciprocal of 
the product of EPISA.i and APISA.i as defined by equation (1). As is common practice in panel 
weight design, the other components of Gi are determined using logit models or logistic re-
gression. This allows systematically taking into account interindividual differences in the 
probabilities of participation. 

 Although perhaps not by all means necessary, separation of AADR.i and AW1.i, on the one 
hand, has the advantage of allowing to focus on estimating AADR.i in the process of model 
development; since non-participation in the address survey is the main source of non-
response, a good approximation of AADR.i is crucial in correcting for potentially ensuing 
bias. On the other hand, this measure takes into consideration that to some extent different 
factors can be expected to be critical in determining AADR.i and AW1.i respectively: It has 
been pointed out that the situational context surrounding the PISA test sessions greatly in-
fluences participation in the initial collection of address data whereas participation in sub-
sequent panel waves depends more on individual attributes. 

 
1 Refusal to participate in any one wave does not lead to deletion from the panel. 
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 Owing to a modular design, weights for further panel waves and the corresponding adjust-
ments for non-response can easily be added if necessary by multiplying Gi, as defined by 
equation (1), with the reciprocal of the response probabilities of the additional wave(s). 

3.1 Design weights for the composite PISA sample 

As mentioned above, the Swiss PISA survey consists of two independent random samples. 
For each of the samples there exists a specific weight variable designed to compensate for 
unequal selection probabilities ensuing from sample design, and also for non-response. Non-
response adjustments correct for non-participation of some schools (national sample) and 
classes respectively (class sample French-speaking Switzerland) (also see Table 1). As is 
common in cross-sectional surveys, the non-response corrections are rudimentary and not 
without problems yet of marginal significance in this context since non-response lies at only 
about five percent.1 The construction of both PISA weights is documented elsewhere 
(Renaud, Ramseier & Zahner, 2000; PISA Consortium, 2000; PISA Romandie, no date). The 
important point here is that for both samples the weights equal the reciprocal of the individual 
probability of inclusion as required by equation (1).  
However, calculation of TREE panel weights as defined by equation (1) requires a weight that 
corrects for design effects and non-response for the composite PISA sample including both 
the national PISA sample and the independent class sample for French-speaking Switzerland. 
In case of German and Italian-speaking Switzerland, where only one sample was drawn, the 
weight variable of the national PISA sample ('w_fstuwt') can be readily employed for this 
purpose. Conversely, the weight variable for the class sample can be used in case of the can-
ton of Jura, where an exhaustive sample was taken.2 
For the remaining parts of French-speaking Switzerland, a new design weight must be con-
structed to adjust for the fact that youths from that region have two independent chances of 
being selected. Since we are dealing with two independent samples, we may calculate the 
inclusion probability of those youths according to the addition law of probabilities as follows:  
 

( )iCiNiCiNiRom PPPPP ..... ⋅−+=  (2) 
 
where 

iRomP .  probability of selection of respondent i from French-speaking Switzerland 

iNP .  probability of inclusion of i in the national sample  

iCP .  probability of inclusion of i in the class sample from French-speaking Switzerland  

 
In principle, the probability of being selected and the PISA design weight for French-speaking 
Switzerland as its reciprocal can be easily calculated by entering the reciprocals of the two 
PISA weight variables for the national sample and class sample for PN.i and PC.i respectively in 
equation (2). The resulting design weight thus already factors in the adjustments for non-
response contained in the two PISA weights. 

 
1 PISA non-response adjustments are based on the somewhat questionable assumption that the respondents 

from one school (national sample) or one class (class sample French-speaking Switzerland) respectively are 
also representative of the non-respondents. 

2 Because of adjustment for non-response, the weights used for the canton of Jura are not constant and for the 
most part slightly greater than 1 in spite of the exhaustive sample. 
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In practice, however, we face the problem that both weight variables are only available in 
cases in which respondents happen to be included in both samples. This, however, is the case 
for only 309 out of 4930 youths of the composite sample drawn from French-speaking Swit-
zerland (excluding Jura). By contrast, for 3806 youths only the weight for the class sample is 
available and for 828 youths solely the one for the national sample. Hence, for those two 
groups the missing weights must be reconstructed.  
The task is easily accomplished as far as reconstruction of weights for the class sample is 
concerned, as it is a single-stage cluster sample with a fairly simple weighting scheme. Calcu-
lation can start from the reasonable assumption that stratum-specific non-response rates 
among the 828 respondents outside of the class sample would be the same as those observed 
within the individual strata of that sample. The potential impact of that assumption is further 
limited for the fact that the adjustment for non-response accounts for only approximately four 
percent of PISA weight variance in the class sample from French-speaking Switzerland.1 
On the other hand, the reconstruction of weights for the national PISA sample has proven 
impossible based on the available data. For a retrospective estimate one would definitely have 
to know the total number of students belonging to the PISA population for all schools in-
cluded in the class sample (Renaud, Ramseier & Zahner, 2000, 8; PISA Consortium, 2000, 7). 
This information is available for schools represented in the national sample but not for those 
that are part of the class sample only. Moreover, attempts at reconstructing this information in 
retrospect have failed just as have efforts at approximating the national weights based on the 
data at hand.  
The only feasible solution is to approximate the weight variable for the national sample of 
those 3806 youths of the class sample by substituting the mean of the national weight vari-
ables for all ninth graders from French-speaking Switzerland (excluding Jura, only stratum 
23) for the missing weight.2 This approximation implies that the probability of inclusion into 
the national sample is the same for all of the 3806 youths. Although this is a rather unsatisfac-
tory solution from a theoretical point of view, the practical effects in terms of the quality of 
the resulting sample weight are small. At any rate, in the case of those ninth graders from 
French-speaking Switzerland who belong to the national sample and for whom the original 
sample weights are known, the design weights as defined by equation (2) remain roughly un-
changed when substituting the actual national weight variable by the said mean value. Calcu-
lations with and without mean substitution are illustrated in the following diagram. 

 
1 This is the result of a variance analysis where the stratum variable defining the subpopulations with invariant 

probabilities of selection serves as the factor and the weight as the dependent variable. 
2  The mean of the weight variables is 13.9. 
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Diagram 2: Calculation of design weights for French-speaking Switzerland. 
 Assessing the loss of precision due to mean substitution (N=1034) 

 
 
The extremely high correspondence irrespective of neglecting the significant differences in 
the individual probabilities of being included in the national sample results from sampling 
fractions of the class sample being several times greater. For this reason, the class-sample 
weights affect the design weights, calculated as the reciprocal of the inclusion probabilities 
according to equation (2), to a much greater degree than the national weight variable. Thus, 
the inevitable substitution of the approximately 3800 missing values in the national weight 
variable by the mean fortunately has no substantial effect on the quality of the design weight.  
To sum up, the design weight may be defined as follows: 
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As mentioned before, the class sample weight (GRom.i) can be used as design weight for the 
canton of Jura as an exhaustive sample was taken there. The design weight for remaining 
French-speaking Switzerland is calculated according to equation (2) while the weight variable 
for the national PISA sample (GNat.i) is entered in the case of German and Italian-speaking 
Switzerland. 
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3.2 Estimation of response probabilities  

The probabilities of participating in the address survey as well as in the seven yearly TREE 
panel waves since 2001 are estimated using logistic regression (Hosmer & Lemeshow, 1989) 
where the information about family and school background as well as individual attributes 
collected in previous PISA or TREE waves may serve as predictors. Following a similar phi-
losophy as Wießner (2003: 89), the specification of the models to correct for non-response 
bias are based as much as possible on the arguments and findings of non-response research 
(Schnell 1997; Koch & Porst, 1998; Stoop, 2005); yet, in lack of a sophisticated theory of 
participation, behaviour model construction is to some extent forced to rely on inductive rea-
soning. All attributes of the youths, their families and educational backgrounds that might 
plausibly be expected to have an influence on participation behaviour are thus tentatively in-
cluded in the participation models. In modelling address survey response, the school setting 
and other situational factors that might have had an effect during the PISA test sessions are 
also considered. To the extent that the factors identified have proven theoretically plausible, 
statistically significant (α ≤ 1%) and robust in terms of effects on participation, they are in-
cluded in the definite models for the respective panel wave.1 Thus, model construction inevi-
tably involves an inductive approach to some degree. Proceeding in this way, on the one hand, 
has the advantage of fairly comprehensively taking potentially significant predictors of non-
response into account, thus minimizing omitted variable bias (Menard 2002: 68f.). On the 
other hand, there is a risk of overfitting the model to random distributions idiosyncratic to the 
particular sample. In this light, it is always good advice to assess the theoretical plausibility of 
any changes in sample estimates caused by the resulting non-response adjustments (also see 
section 7). 
The participation probability estimates are calculated based on the effect coefficients and the 
individual values for the variables as defined by the following equation (cf. Menard, 2002: 
13) and entered into equation (1): 
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 (4) 

 
where 

iA  estimated probability of participation of respondent i  

0B  regression constant  

jB  effect coefficient for variable j  

X ji  value of variable j for respondent i 

The individual models for participation in the address survey and the seven TREE panel 
waves are described in detail in the German documentation of panel weight construction (es-
pecially Tables 3 to 10). The following synopsis is limited to the most significant effects of 
non-response on panel composition that have gradually emerged in the course of the seven 
TREE panel waves. 
 
1 Because of the sizeable sample, a significance level (α) of 1 percent seems appropriate. The models are 

checked for robustness by tentatively excluding the most influential cases in terms of cook distances from es-
timation.  
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3.3 Cumulative effects of non-response 

Before we turn to truncation, poststratification and calibration of the raw weights as defined 
by equation (1) in the sections to come, I shall briefly discuss the cumulative effects of non-
response on the composition of the remaining panel after each wave.  
In principle, we can expect the differences in sample inclusion probabilities for any given 
wave to be partly related to the disproportional design of the initial PISA sample and partly to 
variations in individual participation behaviour. In fact, the relative impact of participation 
behaviour increases over consecutive waves compared to the differences stemming from 
sample design. Accordingly, the proportion of purely design-related differences in the indi-
vidual probabilities of panel inclusion (reciprocal of weights as defined by equation 1) drops 
from 61 to 37 percent by the eighth wave. The variance resulting from sample design alone is 
of no concern in this context because it is free of bias arising from specification or estimation 
errors. The models correcting for systematic differences in participation behaviour, on the 
other hand, are at best good approximations of the underlying (self-)selection processes. From 
this vantage point, a much welcome circumstance is that a major – yet with each wave smaller 
– portion of the differences in individual inclusion probabilities can be traced to the grossly 
disproportionate PISA survey design. In other words, variation in inclusion probabilities is 
mostly accounted for by large differences in the sampling fractions among the different strata 
of the composite PISA sample. Under the bottom line, the design weights for the most part 
simply correct for the strong overrepresentation of French-speaking Switzerland in the initial 
sample.  
Regarding the structure of non-response, the first issue calling for attention is how the rela-
tionship between the attributes at the centre of TREE research and respondents’ willingness to 
participate in the survey has changed across the panel waves. Those attributes in the narrow 
sense include all individual attributes excluding indicators relating to willingness to respond 
(participation behaviour thus far), test administration and context variables. The following 
table contains two different fit statistics for each wave, namely a McFadden-R2 for the com-
plete model for each wave and one for a corresponding model without individual attributes. 
Comparison of the two values reveals the contribution of individual attributes in the narrow 
sense to model fit. 
Especially in case of the first three and again the last wave, model fit seems to crucially de-
pend on the individual attributes included. Thus, in the case of those waves in particular, there 
is a quite strong relation between relevant individual attributes and non-response. However, as 
far as the first three waves are concerned, the overall relationship between predictors and par-
ticipation is a fairly modest one, as the McFadden-R2 for the complete model indicates. This 
can be taken as a sign that, although individual attributes strongly contribute to model fit, 
their impact on non-response is quite limited. In the models for waves 4 to 6, individual at-
tributes apparently play only a marginal role. Since the TREE attributes have been scrutinized 
quite extensively for potentially significant predictors of participation, these findings alto-
gether suggest that differences in non-response for the most part stem from sources that are 
unrelated to the attributes under study. Considering the potential for non-response bias, this is 
of course a welcome finding. Participation in the seventh panel wave, however, depends to a 
larger extent on various relevant individual attributes (Table 10), resulting in a potentially 
much stronger bias. In the eighth TREE wave, there fortunately seems to have again been 
only very little change in the composition of the panel sample. 
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Table 3: The contribution of individual attributes to model fit by wave 

Response model Likelihood ratio pseudo R2 (McFadden) 

 Complete model Reduced model 1) 

Address sheet  .202 .140 
Wave 1 .096 .032 
Wave 2 .130 .001 
Wave 3 .131 .048 
Wave 4 .185 .161 
Wave 5 .154 .122 
Wave 6 .207 .190 
Wave 7 .391 .254 
Wave 8 .210 .204 

1) Models without individual attributes and related interactions. 

 
However, close inspection of the wave-specific participation models reveals that a number of 
individual attributes affect participation across several waves resulting in a cumulation of ef-
fects on sample composition over time. To assess such cumulative effects on panel composi-
tion, all individual attributes showing a substantial impact on participation over several waves 
are considered as relevant. The conditional probability that youths with such attributes remain 
in the panel up to a given wave is first calculated based on the wave-specific models of par-
ticipation and then divided by the corresponding probability for ‘average’ youth without the 
attribute in question.1 The resulting ‘relative inclusion probabilities’ in Table 4 thus give an 
idea of how much the probability of remaining in the panel depends on the most pertinent 
individual attributes and how it changes across waves.  
The first two rows of the table, for instance, illustrate that youths achieving very high levels 
of reading proficiency much more frequently remain in the panel and those exhibiting lower 
proficiency scores more often drop out compared to ‘average youths’. Already in the address 
survey, the probability of the first group remaining in the initial sample is about 24 percent 
above average while the percentage for the second group is below average almost by the same 
amount. By the fifth wave, panel composition in terms of reading proficiency has gradually 
become even more skewed to the point that the probability of remaining in the sample for the 
two groups in the last three waves is at 53 percent above and 42 percent below average re-
spectively. The parallel effects of reading proficiency across the first waves thus cumulate to 
a considerable degree. The following diagram illustrates the results for the five PISA profi-
ciency levels (PISA 2002: 24f.). 
 

 
1 Based on model estimates and equation (4), wave-specific participation probabilities are calculated and then 

multiplied out across waves to arrive at the conditional probability of remaining in the panel up to wave x. 
When calculating the wave-specific probabilities for youth with and without a given attribute, all the other 
predictors are set to their mean (scales, ratings) or modal values (categorical variables).  
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Table 4: Cumulative effects of selected predictors on panel attrition* 

Relative probability of remaining in the sample 1) TREE panel wave 

Attributes relevant to participation 2) Addr. 4) T1 T2 5) T3 T4 T5 T6 T7 T8 

PISA reading proficiency 3) very high 1.24 1.31 1.36 1.40 1.46 1.48 1.48 1.48 1.53

 very low 0.78 0.73 0.69 0.67 0.63 0.62 0.62 0.62 0.58
Not in ninth grade   1.20 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Plans for the future: continue vocational education 
and training (VET)  1.00 1.00 1.00 1.00 1.05 1.08 1.06 1.08 1.11

Plans for the future: other/different VET programme 1.00 1.00 1.00 1.00 1.05 1.07 1.07 1.09 1.09

VET experience: not as expected  1.00 1.00 1.00 1.03 1.03 1.05 1.05 1.05 1.05

Homework completed on time: never   1.00 0.92 0.88 0.88 0.88 0.88 0.88 0.88 0.88

Score on addictive substance consumption scale 3)

 very high 1.00 1.00 0.98 0.96 0.96 0.96 0.96 0.96 0.96

Score on the self-confidence scale  very low 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.92
At home: number of mobile phones (≥3)  1.00 0.97 0.95 0.95 0.92 0.92 0.92 0.92 0.92

At home: number of calculators (≥3)   1.00 1.04 1.07 1.07 1.07 1.07 1.07 1.07 1.07

Does not live with mother  1.00 0.92 0.89 0.89 0.89 0.89 0.89 0.89 0.89

Does not live with father   1.00 0.96 0.93 0.93 0.93 0.93 0.93 0.90 0.90

Born outside of Central Europe    0.92 0.86 0.83 0.83 0.83 0.83 0.83 0.83 0.83

Gender: female   1.16 1.21 1.25 1.28 1.28 1.28 1.28 1.25 1.25

*Minor errors in the 2008 version have been corrected. 
1) Relationship between the probability of a youth with a certain attribute remaining in the panel sample and the correspond-
ing probability of an ‘average’ youth doing so (see text). 
2) Attributes that have proven relevant to models for at least two of the panel waves. 
3) ‘Very high’ and ‘very low’ respectively equals the median of youths achieving the PISA reading proficiency level five and 
one or less, respectively, in the initial TREE sample (wleread = 650 and 359 respectively). 
4) In calculating the probability of participation in the address survey, an average interaction effect between reading profi-
ciency and test administration is assumed (cluster 9 according to Table 3). 
5) In calculating the probability of participation in wave 2, ‘homework always completed | missing’ serves as a reference 
category for the respective variable. 

Diagram 3: Remaining in the TREE panel by PISA reading literacy level 
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The diagram, on the one hand, demonstrates that from the fifth wave on the probability of 
remaining in the panel sample is two and a half times higher for youths with very high read-
ing proficiency (PISA level 5) compared to youths with very low reading skills (level ≤ 1).1 
Across the panel waves, reading proficiency thus has a huge impact on panel attrition. On the 
other hand, it clearly shows that non-participation in the address survey already accounts for 
about half of the difference in the relative inclusion probabilities right at the beginning. Those 
initial differences steadily increase with each additional wave and remain at a constantly high 
level from the fifth wave on. Switching to CATI as the basic TREE module (see Table 2) 
from the fifth wave on may have contributed to this welcome stabilization.  
Table 4 documents the findings for all attributes that play a role in at least two of the wave-
specific participation models and therefore can potentially be expected to entail cumulative 
bias with respect to the composition of the panel sample. In contrast to reading proficiency, 
however, the cumulative effects in these cases, with few exceptions, are fairly small. For the 
majority of the attributes, the relative inclusion probabilities in Table 4 range from 0.9 to 1.1 
across all waves, implying individual deviations of approximately 10 percent at maximum 
from the average.  
Greater deviation, however, is observed for country of origin and gender at the bottom of the 
table, on the one hand. For youths of foreign origin, the large majority of whom come from 
other than Central European countries, the probability of remaining in the panel drops to 83 
percent of the average probability by wave 2. From then on it remains constant, ceteris pari-
bus. Young women, by contrast, already display a much higher level of participation in the 
address survey (+ 16 %) and this overrepresentation in the panel climbs to 28 percent by the 
third wave. After remaining constant for four waves (T3-T6), the effect has somewhat de-
clined in the past two waves, (+ 25%). 
On the other hand, it needs to be mentioned that the cumulated effect of not living with 
mother and/or father at an early stage, which each reduces the inclusion probability by ap-
proximately ten percent, goes hand in hand with a number of wave-specific effects resulting 
from family situation, residential environment and critical life events that point in the same 
direction. Sharing an apartment with others (T2), cohabitation (T4), leaving the parental home 
at an early stage (T3, T6) and early parenthood (T5) all exert a negative effect on continued 
participation in the panel. Overall, these findings suggest that youths from incomplete fami-
lies as well as those who leave home early are more strongly underrepresented in the panel 
than Table 4 alone would lead us to expect.  
Summing up, we may conclude that the composition of the sample in the course of the panel 
waves has changed primarily with regard to four individual attributes. On the one hand, 
youths with low reading proficiency, young men and youths of foreign origin had already 
dropped out of the sample at an above average rate at the time of the address survey. The first 
panel waves subsequently reinforced their already sizable underrepresentation in the initial 
TREE sample. On the other hand, youths from complete families who had been living in the 
parental home during the whole period under study are markedly overrepresented in the panel 
sample.  

 
1 From wave 5 on, the ratio of the respective probabilities of remaining in the sample stays at a constant level 

of about 2.4 (1.48 / 0.62).  
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4 Truncation of the raw weights 
After estimating participation probabilities for all waves, the elements needed for calculating 
the raw weight as defined by equation (2) are available. Under the assumption that the wave-
specific models accurately depict the differences in individual participation probabilities, 
these panel weights allow an unbiased estimation of population characteristics.   

Yet, in applying such sample weights, there often exists a trade-off between correcting for 
non-response bias and minimizing the adverse impact of weights on the accuracy of the sam-
ple estimates. Essentially, the loss of accuracy increases with the variance of the weight vari-
ables. In case of panel weights, in particular, the variance of the weights can be expected to 
grow from wave to wave (see equation 1), thus increasingly reducing the accuracy of sample 
estimates with each additional wave. The situation arises especially in cases, as in TREE, 
where a large number of successive panel waves are conducted. Frequently, only a few cases 
with extreme values strongly inflate the variance of weight variables and hence severely im-
pair the accuracy of estimate. According to Kish (1992), the sample variance of a weighted 
mean (μw) compared to an unweighted one (μ) can be described by the following equation 
where cv is the coefficient of variation of the weight variable: 

 
( )21)var()var( cvw +⋅= μμ  

 (5) 
Apart from more or less seriously compromising the accuracy of sample estimates, extremely 
large individual weights also bear the major disadvantage of having a greatly disproportionate 
impact on the analyses of smaller subsamples that may render them unstable.  
Weight truncation provides a means of avoiding or at least mitigating such adverse effects. 
This involves trimming individual weights greater than a fixed maximum value to that value. 
The optimal threshold value for truncation is determined by performing an analysis based on 
equation (5). Table 5 provides a numerical example of such an analysis based on the T4 
weights. The weight variable employed in the example is calculated using equation (1) and 
then recalibrated to a mean of 1.1 In the first column, the upper threshold value, which the 
weights are truncated to, is varied systematically for testing purposes. The next column lists 
the resulting coefficients of variation for the T4 weights truncated at various thresholds. The 
fourth column gives the increase in the variance of the weighted compared to the unweighted 
sample estimator, as defined by equation (5), as a function of the truncation threshold values. 
Without truncation, we would therefore have to expect about a sixfold purely weight-related 
loss in the accuracy of estimate. The more the weight variability is reduced by way of trunca-
tion, the more this unfavourable ratio gradually diminishes. If the number of truncated indi-
vidual weights in the rightmost column is additionally taken into consideration, truncation at a 
threshold value of 8 proves to be optimal for the example in question. A more extreme trunca-
tion results in an only small improvement in the accuracy of sample estimates while at the 
same time the number of affected weights and respondents climbs sharply, hence compro-
mising the unbiasedness of the sample estimates and the effectiveness of the non-response 
corrections. There is evidence that the trade-off between accuracy and increase in bias will 
only render positive results when truncation is cautiously limited to a small number of cases. 
On grounds of these considerations, the recalibrated raw T4 weights are truncated at an upper 

 
1 For this purpose, the raw T4 weight is divided by its mean. This recalibration does not affect optimal trunca-

tion in any way. 
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threshold of 8.1 As Table 5 shows, truncation of only 39 extreme weights (0,8 % of the T4 
sample) allows substantially reducing the weight-related loss of accuracy. Owing to trunca-
tion, the sampling errors to be expected in accordance with equation (5) are only a good two 
and a half times instead of six and a half times greater than in the case of an unweighted sam-
ple of the same size.  
 
 

Table 5: Truncation of raw T4 weights 

 cv var(μw)/var(μ) Number of 
truncated weights 

Without truncation 2.35 6.52 0 
Truncation of recalibrated Gi 

> 50 2.12 5.49 2 
> 20 1.67 3.79 10 
> 10 1.37 2.88 33 
> 9 1.32 2.76 36 
> 8 1.28 2.64 39 
> 7 1.23 2.52 51 
> 6 1.18 2.39 67 
> 5 1.11 2.24 93 

 
Similarly, truncation can serve to substantially improve the accuracy of weighted sample es-
timates for all other TREE waves. Based on the criteria exemplified above, eight proves to be 
the ideal upper threshold value for truncation in case of the weights for the first five waves, 
seven for the sixth and seventh, and four for the eighth TREE wave.2 The following table 
demonstrates how truncation improves the accuracy of sample estimates and documents the 
number of extreme weights affected.  

Table 6: Truncation, accuracy of estimate, and number of weights affected 

 Without truncation With truncation Number of affected weights
 var(μw)/var(μ) var(μw)/var(μ) no. cases            (%) 

Sample wave 1  2.6 2.1 18 (0.3) 
Sample wave 2  2.8 2.2 23 (0.4) 
Sample wave 3  8.4 2.4 26 (0.5) 
Sample wave 4  6.5 2.6 39 (0.8) 
Sample wave 5  7.2 3.2 52 (1.2) 
Sample wave 6  55.2 3.5 52 (1.3) 
Sample wave 7  118.6 4.9 54 (1.4) 

Sample wave 8  199.9 5.2 51 (1.5) 

All values are based on the sample realized for each specific wave. 

 
1  For the raw raising weight as defined by equation (1), this translates into an upper threshold value of about 

110. 
2  Said truncation threshold values still refer to the raw weights Gi as defined by equation (1) that have been 

recalibrated to the mean of 1. Determining the ideal truncation threshold value always involves a consider-
able degree of discretion; for this reason, the dataset used for weighting also includes raw weights that are not 
truncated. This enables defining the trade-off between accuracy and bias for each individual analysis. 
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The results in Table 6 clearly show that without truncation the accuracy of estimate drops to 
intolerably low levels from wave 3 and especially from wave 6 on. Except for analyses draw-
ing on data from the first two waves only, the results strongly advise against basing analyses 
on weights that are not truncated. Even after truncation, weighting still entails a considerable 
decrease in the accuracy of estimate; accuracy clearly diminishes little by little with each 
wave just as the increasing variance of weights across waves would lead us to expect. The 
additional loss in accuracy observed since the seventh wave is particularly remarkable. How-
ever, when interpreting the accuracy figures above, we must bear in mind that we are talking 
about relative losses compared with an unweighted sample of the same size. The measure of 
comparison is thus an utmost accurate estimate since the TREE sample is extraordinarily 
large. Even in the eighth wave the sample still comprises 3,400 respondents – a sample size 
enabling far more accurate estimates than in many other cases.  

5 Poststratification  
The weighting factors are constructed, among other things, to enable assessment of the abso-
lute and relative sizes of selected subpopulations in a longitudinal perspective. For descriptive 
purposes of that kind, a poststratification of those weights is performed to hold the size of a 
number of particularly important subpopulations constant across all panel waves (see Elliot, 
1991; Kish, 1995).1 Poststratification helps to further stabilize sample estimates.  
 
Table 7: Reference distribution for poststratification of the sample 

School type lower 
secondary level  

Gender Language region  Share (%) 

Advanced requirements 1) female German 24.9 

Advanced requirements 1) female French 9.3 

Advanced requirements 1) male German 22.1 

Advanced requirements 1) male French 8.8 

Basic requirements 2) female German 10.1 

Basic requirements 2) female French 2.3 

Basic requirements 2) male German 13.9 

Basic requirements 2) male French 2.3 

Integrated school type female Italian 3) 1.1 

Integrated school type female German / French 1.8 

Integrated school type male Italian 3) 1.4 

Integrated school type male German / French 2.2 

Total   100.0 

1) Lower secondary level advanced track (secondary school or Gymnasium) 
2) Lower secondary level basic track (Realschule). 
3) Integrated school type is only available option. 

 

 
1 To the extent that the weighting model fails to include all sources of systematic non-response in a properly 

specified fashion, the weighted sample distribution may deviate from the initial distribution at the outset.   
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Since suitable reference distributions, for instance from official statistics, for the school-
leaver population of 2000 are missing, poststratification is based on the data collected in wave 
1. Those data are least affected by panel mortality and are thus best suited for approximating 
the unknown distribution for the population in question. Poststratification takes into account 
school type, gender and language region in defining twelve strata, as shown in the table 
above, that are held constant in terms of size across panel waves.  
Poststratification ensures that the respective recalibrated sample weights for all subsequent 
waves conform to the reference distribution derived from the sample for wave 1 as displayed 
in said table.1  

6 Raising factors and sample weights 
Individual panel weights calculated according to equation (1) are not well suited for inferen-
tial statistical procedures but only for estimates for the population in question (see section 1). 
A count weighted by factor Gi provides an estimate for the total number of individuals in a 
population possessing the respective attributes. If one has inferential statistical analyses in 
mind, where significance tests, standard errors and confidence intervals come into play, Gi 
must be recalibrated in each case so that the sum of the weights corresponds to the size of the 
sample under analysis (Moser & Kalton, 1971). Statistics software in some cases performs 
such recalibration automatically; in others, it must be done manually.2 For this reason, the 
dataset for each TREE wave also contains recalibrated sample weights in addition to the rais-
ing weights. However, we must keep in mind that for inferential statistical analyses based on 
subsamples, or in cases of an appreciable reduction of sample size due to missing values, the 
recalibration must be performed anew.3 The dataset containing the TREE weights consists of 
four kinds of weight variables for each TREE wave in addition to the design weights for the 
composite PISA sample described in section 3.1. Apart from a raw raising weight as defined 
by equation (1), a truncated raising weight poststratified as described in section 5 is also 
available. All of the truncated and poststratified raising weights are recalibrated to a popula-
tion total of 80,000 in each case. This is an approximation of the underlying population, the 
actual size of which is not precisely known.4 For each of the two raising weights, the dataset 
also contains a corresponding sample weight designed for inferential statistical analyses that 
differs only in that it is recalibrated to a sample mean of 1. In general, statistical analyses are 
best performed based on truncated and calibrated sample weights (but also see section 7); the 
respective raising weights are used only when estimating the absolute size of some population 
is the issue. 
Table 8 lists the most important distribution figures for the thus derived individual weights 
required for expansion and statistical inference. The youths participating in a specific wave 
make up the respective sample (also see Table 1).5 
 
 
1  For this purpose, the wave-specific weights are multiplied by a calibration factor specific to each stratum. 

Two cases where the school type is missing have been excluded from poststratification.  
2 This is accomplished by dividing the raising weight by its mean for the respective sample under analysis.  
3 The mean of the weight variables for the analyzed sample should always be 1.  
4  Since poststratification and recalibration are performed after truncation of weight variables, the calibrated 

raising and sample weights can take on higher maximum values than the truncation criteria specified in the 
last section would suggest. 

5 All variables listed are included in the data file containing the weight variables (TREE-Weights_T1-T8.sav). 
In addition, the file includes all predicted probabilities for the wave-specific models as well as the auxiliary 
variables used in calculating and poststratifying the weights. 
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Table 8: Descriptive statistics of raising factors and sample weights* 

 Mean   Sum 
Standard devia-
tion Minimum Maximum N 

Weights for wave 1     
raw raising factor 13.9 76,620 17.8 1.36 691 5,532 
raw sample weight 1.0 5,532 1.3 0.10 50 5,532 
truncated & calibrated raising factor 14.5 80,000 15.3 1.44 117 5,532 
truncated & calibrated sample weight 1.0 5,532 1.1 0.10 8 5,532 

Weights for wave 2      
raw raising factor 16.0 83,262 21.4 1.39 463 5,210 
raw sample weight 1.0 5,210 1.3 0.09 29 5,210 
truncated & calibrated raising factor 15.4 80,000 16.9 1.30 145 5,210 
truncated & calibrated sample weight 1.0 5,210 1.1 0.08 9 5,210 

Weights for wave 3      
raw raising factor 19.3 94,166 52.4 1.42 2,769 4,882 
raw sample weight 1.0 4,884 2.7 0.07 144 4,882 
truncated & calibrated raising factor 16.4 80,069 19.4 1.16 147 4,882 
truncated & calibrated sample weight 1.0 4,884 1.2 0.07 9 4,882 

Weights for wave 4      
raw raising factor 22.5 105,290 52.9 1.45 1,954 4,680 
raw sample weight 1.0 4,680 2.4 0.06 87 4,680 
truncated & calibrated raising factor 17.1 80,000 22.3 1.14 177 4,680 
truncated & calibrated sample weight 1.0 4,680 1.3 0.07 10 4,680 

Weights for wave 5      
raw raising factor 27.9 125,779 69.3 1.48 1,527 4,504 
raw sample weight 1.0 4,504 2.5 0.05 55 4,504 
truncated & calibrated raising factor 17.8 80,000 23.7 0.74 201 4,504 
truncated & calibrated sample weight 1.0 4,504 1.3 0.04 11 4,504 

Weights for wave 6      
raw raising factor 43.5 180,026 320.4 1.55 15,564 4,135 
raw sample weight 1.0 4,135 7.4 0.04 357 4,135 
truncated & calibrated raising factor 19.3 80,000 28.5 0.86 262 4,135 
truncated & calibrated sample weight 1.0 4,135 1.5 0.04 14 4,135 

Weights for wave 7      
raw raising factor 72.7 289,341 788.0 1.62 35,713 3,982 
raw sample weight 1.0 3,982 10.8 0.02 491 3,982 
truncated & calibrated raising factor 20.1 80,000 35.9 0.47 404 3,982 
truncated & calibrated sample weight 1.0 3,982 1.8 0.02 20 3,982 

Weights for wave 8       

raw raising factor 163.9 561,171 2,312.1 1.69 97,089 3,424 
raw sample weight 1.0 3,424 14.1 .01 592 3,424 
truncated & calibrated raising factor 23.4 80,000 47.4 .54 449 3,424 
truncated & calibrated sample weight 1.0 3,424 2.0 .02 19 3,424 

* The distribution figures listed in the table refer to the wave-specific samples of participating youths. 
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7 Some remarks on the application of the panel weights  
 
In this section, a few issues concerning the application of the TREE panel weights in statisti-
cal analysis shall be briefly discussed. The first question to be addressed concerns the appro-
priate choice of sample weights to match different types of analyses. Subsequently, some is-
sues regarding the assessment of non-response bias will be considered as well as questions 
pertaining to the efficacy of the non-response corrections figured into the sample weights. The 
brief discussion will then close with a few remarks on the calculation of sampling errors and 
tests of significance based on the weighted panel sample. 
Typically, statistical analyses are based on the sample weights of the most recent panel wave 
from which the data to be analyzed originated. For instance, the sample weights of the third 
wave are employed in analyzing data from PISA and the first three TREE waves. Or in a 
cross-sectional analysis of a single wave, the sample weights of the respective wave are ap-
plied. This is a valid rule of thumb as long as the data for all respondents going into the analy-
sis originate from the same waves. The situation changes if, for instance, the object of re-
search is a transition process that may take place at different points in time for individual re-
spondents and thus is recorded in different panel waves (see e.g. Hupka, Sacchi & Stalder, 
2006). 
In that case, the probability of sample inclusion and thus the sample weight depends on the 
specific wave in which the transition is recorded that marks the end of the time period under 
study in a given respondent’s life. For such an analysis, each youth is individually assigned 
the sample weight of the specific wave in which the relevant information on the transition was 
recorded (or in more general terms: in which the most recent information needed for an analy-
sis was recorded). The raw raising factors in the dataset are employed for this purpose since 
the calibrated weights are not directly comparable across the waves due to the wave-specific 
calibration constants that are factored in. A raw raising weight newly compiled in this manner 
must subsequently be truncated and calibrated, as described in section 4 and 6. For the rea-
sons discussed above, truncation should not be neglected in most cases. This is particularly 
critical if part of the data to be analyzed has been collected in the third wave or later (see end 
of section 4). Generally speaking, the compilation of individual weights described so far is 
appropriate when the observation span covers different time periods in the lives of the indi-
vidual respondents, implying that the most recent data going into the analysis stems from dif-
ferent waves for the individual sample members. 
After the appropriate sample weight for a given analysis has been selected (or compiled as 
described above) and, if necessary, recalibrated (see section 6, FN 1), the question arises as to 
how corrections for non-response affect estimates. The best way to answer this question is to 
compare the weighted analyses with an otherwise identical analysis that is based on the – if 
necessary, recalibrated – design weights for the composite PISA sample (which serves as the 
starting wave of the TREE panel). If these analyses essentially lead to more or less identical 
results, this allows the conclusion that the corrections for non-response contained in the panel 
weights do not substantially influence the estimates. If not, this raises questions as to the plau-
sibility of the observed disparities in light of the findings in section 3.3 (and the full German 
documentation of the attrition models) and the state of the art in research on non-response and 
panel attrition. In contrast, the impact of the design weights on the estimates poses no prob-
lem in this respect as they exclusively compensate for the complex design of the composite 
PISA 2000 (see section 1). The differences in results based on design weights and panel 
weights, however, stem from wave-specific models correcting for attrition bias, which give 
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rise to both sampling errors and potential specification problems (Menard 2002: 67 f.). Speci-
fication problems cannot be ruled out since in constructing the models considerable effort was 
invested in comprehensively identifying all the attributes of the panel participants and their 
context that could reasonably be expected to influence panel participation. Such a to some 
extent inductive approach, on the one hand, does a good job of correcting non-response bias 
as exhaustively as possible. This minimizes specification errors of the ‘omitted variable bias’ 
type (Menard 2002: 68f.), at least as far as empirically recorded attributes are concerned. On 
the other hand, this approach inevitably runs the risk of “model overfit” – that is, overly ad-
justing the model to fit purely idiosyncratic sample distributions (also see Wießner 2003: 89). 
Against this background, it is good advice to determine the impact of the non-response cor-
rection on sample estimates as described and to assess its theoretical plausibility. 
I would like to close by briefly pointing out that an accurate estimation of sampling variance 
on the basis of the weighted TREE panel requires considering the complex structure of the 
underlying PISA sample. Even if correctly calibrated panel weights (see section 6) are used, 
statistical packages that implicitly or explicitly are confined to simple random samples do not 
allow accurate estimates of sample variance. In general, we would expect them to systemati-
cally underestimate standard errors and confidence intervals while overestimating levels of 
significance accordingly. Instead, either inductive resampling methods (e.g. bootstrap meth-
ods, cf. Mooney & Duval, 1993) or variance estimators designed for complex samples should 
be used (see Lee, Forthofer & Lorimor, 1989), as implemented in STATA or recent versions 
of SPSS (STATA: ‘svy’-commands; SPSS: ‘complex samples’-tools).  
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